APPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES
Authors
Abstract:
An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the identification and classification of the EDZ. The Support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can solve the classification problem with small sampling, non-linearity and high dimension. However, the practicability of the SVM is influenced by the difficulty of selecting appropriate SVM parameters. In this study, the proposed hybrid Harmony search (HS) with the SVM was applied for identification and classification of damaged zone, in which HS was used to determine the optimized free parameters of the SVM. For identification and classification of the EDZ, based upon the modulus of the deformation modulus and using the hybrid of HS with the SVM a model for the identification and classification of the EDZ was built. To illustrate the capability of the HS-SVM model defined, field data from a test gallery of the Gotvand dam, Iran were used. The results obtained indicate that the HS-SVM model can be used successfully for identification and classification of damaged zone around underground spaces.
similar resources
APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE ASSESSMENT OF DAMAGED ZONE AROUND UNDERGROUND SPACES
The development of an excavation damaged zone (EDZ) around an underground excavation can change the physical, mechanical and hydraulic behaviors of the rock mass near an underground space. This might result in endangering safety, achievement of costs and excavation planed. This paper presents an approach to build a prediction model for the assessment of EDZ, based upon rock mass characteristics...
full textPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
full textUSING LATIN HYPERCUBE SAMPLING BASED ON THE ANN-HPSOGA MODEL FOR ESTIMATION OF THE CREATION PROBABILITY OF DAMAGED ZONE AROUND UNDERGROUND SPACES
The excavation damaged zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. In this paper, a methodology was examined for computing...
full textIdentification areas with inundation potential for urban runoff harvesting using the support vector machine model
Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...
full textHybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine
In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...
full textApplication of Support Vector Machine Regression for Predicting Critical Responses of Flexible Pavements
This paper aims to assess the application of Support Vector Machine (SVM) regression in order to analysis flexible pavements. To this end, 10000 Four-layer flexible pavement sections consisted of asphalt concrete layer, granular base layer, granular subbase layer, and subgrade soil were analyzed under the effect of standard axle loading using multi-layered elastic theory and pavement critical r...
full textMy Resources
Journal title
volume 3 issue 2
pages 345- 358
publication date 2013-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023